A refined classification of symmetric cubic graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

A more detailed classification of symmetric cubic graphs

A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. Djokovič and Miller (1980) proved that there are seven types of arc-transitive group action on finite cubic graphs, characterised...

متن کامل

Classification of Cubic Symmetric Tricirculants

A tricirculant is a graph admitting a non-identity automorphism having three cycles of equal length in its cycle decomposition. A graph is said to be symmetric if its automorphism group acts transitively on the set of its arcs. In this paper it is shown that the complete bipartite graph K3,3, the Pappus graph, Tutte’s 8-cage and the unique cubic symmetric graph of order 54 are the only connecte...

متن کامل

cubic symmetric graphs of orders $36p$ and $36p^{2}$

a graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. in this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

Symmetric cubic graphs of small girth

A graph Γ is symmetric if its automorphism group acts transitively on the arcs of Γ, and s-regular if its automorphism group acts regularly on the set of s-arcs of Γ. Tutte (1947, 1959) showed that every cubic finite symmetric cubic graph is s-regular for some s ≤ 5. We show that a symmetric cubic graph of girth at most 9 is either 1-regular or 2-regular (following the notation of Djokovic), or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2009

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2009.03.011